Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526524

RESUMO

During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.


Assuntos
Hematopoese , Macrófagos , Animais , Camundongos , Hematopoese/genética , Células-Tronco Hematopoéticas , Diferenciação Celular , Eritropoese , Fígado , Nicho de Células-Tronco/genética
2.
Methods Mol Biol ; 2713: 281-296, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37639130

RESUMO

Macrophages display a high degree of phenotypic diversity and plasticity, which is influenced by their location within the tissue microenvironment. Co-Detection by Indexing (CODEX), a multiplexed imaging technique, allows the simultaneous detection of multiple membrane and cellular markers that enable the accurate identification of tissue-resident hematopoietic and non-hematopoietic cells, while conferring spatial information at a single-cell level. Here we describe the use of CODEX to visualize the phenotypic and spatial heterogeneity of murine tissue-resident macrophages in several organs, and a pipeline to characterize their cellular microenvironments and interactions.


Assuntos
Diagnóstico por Imagem , Macrófagos , Animais , Camundongos , Microambiente Celular
3.
Bioinformatics ; 39(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36943334

RESUMO

SUMMARY: To allow the comprehensive histological analysis of the whole intestine, it is often rolled to a spiral before imaging. This Swiss-rolling technique facilitates robust experimental procedures, but it limits the possibilities to comprehend changes along the intestine. Here, we present IntestLine, a Shiny-based open-source application for processing imaging data of (rolled) intestinal tissues and subsequent mapping onto a line. The visualization of the mapped data facilitates the assessment of the whole intestine in both proximal-distal and serosa-luminal axis, and enables the observation of location-specific cell types and markers. Accordingly, IntestLine can serve as a tool to characterize the intestine in multi-modal imaging studies. AVAILABILITY AND IMPLEMENTATION: Source code can be found at Zenodo (https://doi.org/10.5281/zenodo.7081864) and GitHub (https://github.com/SchlitzerLab/IntestLine).


Assuntos
Processamento de Imagem Assistida por Computador , Intestinos , Software , Intestinos/diagnóstico por imagem
4.
Eur J Immunol ; 53(11): e2249923, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36623939

RESUMO

This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various non-lymphoid tissues. Here, we provide detailed procedures for a variety of multiparameter fluorescence microscopy imaging methods to explore the spatial organization of DC in tissues and to dissect how DC migrate, communicate, and mediate their multiple functional roles in immunity in a variety of tissue settings. The protocols presented here entail approaches to study DC dynamics and T cell cross-talk by intravital microscopy, large-scale visualization, identification, and quantitative analysis of DC subsets and their functions by multiparameter fluorescence microscopy of fixed tissue sections, and an approach to study DC interactions with tissue cells in a 3D cell culture model. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.


Assuntos
Células Dendríticas , Linfócitos T , Humanos , Microscopia de Fluorescência/métodos
5.
Immunity ; 55(12): 2336-2351.e12, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36462502

RESUMO

Therapeutic promotion of intestinal regeneration holds great promise, but defining the cellular mechanisms that influence tissue regeneration remains an unmet challenge. To gain insight into the process of mucosal healing, we longitudinally examined the immune cell composition during intestinal damage and regeneration. B cells were the dominant cell type in the healing colon, and single-cell RNA sequencing (scRNA-seq) revealed expansion of an IFN-induced B cell subset during experimental mucosal healing that predominantly located in damaged areas and associated with colitis severity. B cell depletion accelerated recovery upon injury, decreased epithelial ulceration, and enhanced gene expression programs associated with tissue remodeling. scRNA-seq from the epithelial and stromal compartments combined with spatial transcriptomics and multiplex immunostaining showed that B cells decreased interactions between stromal and epithelial cells during mucosal healing. Activated B cells disrupted the epithelial-stromal cross talk required for organoid survival. Thus, B cell expansion during injury impairs epithelial-stromal cell interactions required for mucosal healing, with implications for the treatment of IBD.


Assuntos
Colite , Mucosa Intestinal , Animais , Cicatrização , Células Epiteliais/metabolismo , Epitélio , Modelos Animais de Doenças
6.
Med ; 2(9): 999-1001, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34522907

RESUMO

Innate and adaptive heterologous immunity confers resistance to pathogens. However, its impact on resistance and the course of human infection have remained largely elusive, hampering the use of this phenomenon to enhance vaccine efficacy. In this issue of Med, Mysore et al. show that T cell responses elicited by SARS-CoV-2 infection or vaccination correlate with those induced by MMR and Tdap immunization, revealing the transcriptomic basis of these correlations and find that heterologous adaptive immunity contributes to a better prognosis of COVID-19 disease.1.


Assuntos
COVID-19 , Vacinas contra COVID-19/uso terapêutico , Humanos , Imunidade Heteróloga , SARS-CoV-2 , Linfócitos T/imunologia
7.
Hum Gene Ther ; 32(17-18): 959-974, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33554722

RESUMO

We present membrane-based steric exclusion chromatography (SXC) as a universal capture step for purification of adeno-associated virus (AAV) gene transfer vectors independent of their serotype and surface characteristics. SXC is performed by mixing an unpurified cell culture supernatant containing AAV particles with polyethylene glycol (PEG) and feeding the mixture onto a chromatography filter unit. The purified AAV particles are recovered by flushing the unit with a solution lacking PEG. SXC is an inexpensive single-use method that permits to concentrate, purify, and re-buffer AAV particles with yields >95% and >80% impurity clearance. SXC could theoretically be employed at industrial scales with units of nearly 20 m2.


Assuntos
Terapia Genética , Polietilenoglicóis , Técnicas de Cultura de Células , Cromatografia em Gel , Dependovirus/genética , Genes Virais , Vetores Genéticos/genética
8.
Elife ; 82019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30672737

RESUMO

Nuclear entry of HIV-1 replication complexes through intact nuclear pore complexes is critical for successful infection. The host protein cleavage-and-polyadenylation-specificity-factor-6 (CPSF6) has been implicated in different stages of early HIV-1 replication. Applying quantitative microscopy of HIV-1 reverse-transcription and pre-integration-complexes (RTC/PIC), we show that CPSF6 is strongly recruited to nuclear replication complexes but absent from cytoplasmic RTC/PIC in primary human macrophages. Depletion of CPSF6 or lack of CPSF6 binding led to accumulation of HIV-1 subviral complexes at the nuclear envelope of macrophages and reduced infectivity. Two-color stimulated-emission-depletion microscopy indicated that under these circumstances HIV-1 complexes are retained inside the nuclear pore and undergo CA-multimer dependent CPSF6 clustering adjacent to the nuclear basket. We propose that nuclear entry of HIV-1 subviral complexes in macrophages is mediated by consecutive binding of Nup153 and CPSF6 to the hexameric CA lattice.


Assuntos
Capsídeo/metabolismo , Núcleo Celular/metabolismo , HIV-1/metabolismo , Macrófagos/metabolismo , Macrófagos/virologia , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Capsídeo/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , HIV-1/efeitos dos fármacos , HIV-1/patogenicidade , Células HeLa , Humanos , Indóis/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Macrófagos/efeitos dos fármacos , Fenilalanina/análogos & derivados , Fenilalanina/farmacologia , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
9.
Viruses ; 10(11)2018 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-30423802

RESUMO

Macrophages are natural target cells of human immunodeficiency virus type 1 (HIV-1). Viral replication appears to be delayed in these cells compared to lymphocytes; however, little is known about the kinetics of early post-entry events. Time-of-addition experiments using several HIV-1 inhibitors and the detection of reverse transcriptase (RT) products with droplet digital PCR (ddPCR) revealed that early replication was delayed in primary human monocyte-derived macrophages of several donors and peaked late after infection. Direct imaging of reverse-transcription and pre-integration complexes (RTC/PIC) by click-labeling of newly synthesized DNA further confirmed our findings and showed a concomitant shift to the nuclear stage over time. Altering the entry pathway enhanced infectivity but did not affect kinetics of viral replication. The addition of viral protein X (Vpx) enhanced productive infection and accelerated completion of reverse transcription and nuclear entry. We propose that sterile alpha motif (SAM) and histidine/aspartate (HD) domain-containing protein 1 (SAMHD1) activity lowering deoxyribonucleotide triphosphate (dNTP) pools is the principal factor delaying early HIV-1 replication in macrophages.


Assuntos
Infecções por HIV/virologia , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Macrófagos/virologia , Replicação Viral , Ordem dos Genes , Genoma Viral , Células HEK293 , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Ligação Proteica , Proteólise
10.
Mol Plant Pathol ; 19(3): 593-606, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28218447

RESUMO

Xanthomonas axonopodis pv. manihotis (Xam) causes cassava bacterial blight, the most important bacterial disease of cassava. Xam, like other Xanthomonas species, requires type III effectors (T3Es) for maximal virulence. Xam strain CIO151 possesses 17 predicted T3Es belonging to the Xanthomonas outer protein (Xop) class. This work aimed to characterize nine Xop effectors present in Xam CIO151 for their role in virulence and modulation of plant immunity. Our findings demonstrate the importance of XopZ, XopX, XopAO1 and AvrBs2 for full virulence, as well as a redundant function in virulence between XopN and XopQ in susceptible cassava plants. We tested their role in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) using heterologous systems. AvrBs2, XopR and XopAO1 are capable of suppressing PTI. ETI suppression activity was only detected for XopE4 and XopAO1. These results demonstrate the overall importance and diversity in functions of major virulence effectors AvrBs2 and XopAO1 in Xam during cassava infection.


Assuntos
Xanthomonas axonopodis/patogenicidade , Xanthomonas/patogenicidade , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Imunidade Vegetal/genética , Imunidade Vegetal/fisiologia , Virulência/genética , Virulência/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...